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Generalized-Lorentzian path integrals
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A type of path integral is introduced that is basedgphorentzian functions. It extends the common family
of Gaussian path integrals to a more general class with the Gaussian path integrals being the limiting case for
g—1. Intuitively one may expect that this type of path integral applies to problems where inherent correlations
become important. Application to turbulence or nonlinear Sdimger problems may be possible. As a first
step we provide the modified representation for transition probabilities and the generation functional.
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Path integrals have been introduced into physics by Feyrkind of quantum statistics whose properties differ from the
man[1] (for reference see ald@]) in an approach to refor- known statistic{9]. Here we demonstrate that on its basis
mulate quantum mechanics in terms of the many virtual orone can also define a new class of path integrals that may
bits a particle may perform when passing from an initialprove useful in treating statistical states with correlations.
position in spacetime to its final destination. These integral$uch integrals can be constructed in analogy to the Gaussian
have been based on Gaussian integrals because of their reRgth integrals by considering the non-Gaussian integral
tively easy mathematical treatment. In addition, however, the 11
underlying Markovian assumption of equal probability of the f” dX[1+(1-q)Bx2]" 1/(l—q):28[1/(1_q) 212
particle orbits in quantum mechanics justified the Gaussian J -« [(1—q)B]*?
assumption and immediately lead to Gaussian statistics. 2

More recently it has been demonstrated that statistical me- . . S .
chanics may under some special, though so far not well unwhere B(x,y) is the beta function, which is expressible

derstood, circumstances deviate from pure Markovian nat_hrough gamma functions. This integral convergesl r

: i : —12
ture. The investigation of Tl flight dynamics [3,4] =1.Forg—1 it approaches its Gaussian valuef) “*

suggests that statistical mechanics sometimes does not fo-'l_-?.(lj(gr?h (;hf?e?ebnocvee f'rr:rig;ﬁgog; :sa;z tlpmpte'rrzotrrrgttzg:ue ;—a
low Gaussian distributions. Moreover, it has been suggeste?lt IKing dittere ) i ussl imit | nv
ence of the integral is strictly valid only fdg|<1 while

that thermodynamics can be reformulated to account fo or the related moment intearals where the intearand is mul-
some observed nonextensivifg]. This case has recently =~ . o1 integrals whe integ 'S mu
tiplied by x convergence is restricted to the domain 1

been given a sound statistical bg€is7]. The important find- q<2la. Extension to the domain>1 can thus be ob-

ing is that the Boltzmann-Gaussian distribution of states ist_. d onl h £ defining th | tary int
replaced by a distribution of the type of ggeneralized aned only on the way ot defining the compiementary inte-

Lorentzian ral

2B[1/(9—1) — 3, 5]
[(a—1)B]"?

whereq is a parameter that in the classical case contains the ©)
underlying microscopic dynamicg@ a constant correspond-
ing to the temperature of the systeAy, an appropriate nor-
malization constant, and the upper and lower signs refer t

the two casegi<1 andqg=1, respectively. In the limit of We now generalize the integral in E®) to N dimen-

q.ﬂl. th_e distri_bution(l) smoothly approaches the Gau_SSi‘fmsions. It then assumes the following compact form:
distribution of independent states. Hence, the above distribu-

tion function is a generalization of the usual Maxwell- fx fw dx; - -dxy

fa(X)=Ag[1=(1-q)Bx?] "9, (1) F dX[1+(q—1)Bx?]~ Ua-D=

which exists for xq<3 and in the limitg— +1 also re-
roduces the Gaussian case. Negative valueg afe ex-
luded in this case.

Gaussian distribution, ang contains the information about

the correlations between states. These correlations have been

discussed in the context of some applicati¢see, e.9.[6]).

An explicit expression foq applying to one particular case

has been derived by Hasegaefal. [8]. N
The above distribution gives the possibility to discuss 2T B[a(1—q) —Li(i+1), 5]

thermodynamically nonextensive states and also to define a i=1 @

N
Hl [(1—q)B;]"?

N 1/(1—q)
1+(1-q) > ﬂix?l
i=1
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This integral can be written as for application in cases when deviations from stochasticity
dominate the evolution of the system under consideration.
--dxy The parameteq then provides a compactification of the non-
f Jfoc [1+(1—q)x"-A-x]¥1-® stochastic correlation processes into one single number.

For applications of the path integral formalism it is very
much desired to have an integral that contains a free variable.
() Such an integral can be constructed by adding a linear term
to the square of the variable in the Lorentzian denominator in
Eq. (6). We do this in the form

2N
= B
[(1—q)NdetA]1/2iUl 1-q 4

|(|+1) =

The column vectorx has elements;, the superscripfl
means taking the transposed, giidare the elements of the dx, -
. Xq e dXy

matrix A f f - .
The last equation is similar to the result for Gaussian in- —oJ—o {1+ (1-q)[xT-A-x—2pT- x}H7D

tegrals. This is obvious because the Gaussian case is con-

tained in our more genera| representat|on as the |q]q+{ Herep is the new freeN-dimensional column vector. This

+1. In order to make this similarity even more lucid we expression can be quadratically completed using

divide by the normalization factor on the right-hand side to

(€)

obtain xT-A-x=2pT-x=(x=A"t-p)T-A- (x= A% p)
(1_q)N/2 _ET'Ail'E- (10)
exp(—TriIn A)= —
oNTT Bruf1—q) — 2i(i+1),3] With _the ugual change of variablexszx—aAfl-p the inte-
i=1 gral including the free-parameter vectpr can be solved
f f dxy yielding
—°°[1+(1 )X -A-X]l/(l @ f j dxy---dXy
6) — e {14 (L)X Ax=2p XM
The identity of the exponential of the trace of the logarithm QN(q,E,A)exq—Tr In A)
and the determinant is a well-known fact and can be proven = [1—(1—q)5T-A‘1-5]1’<1‘Q)’ (11

by diagonalization. The left-hand side of this expression is
finite for any dimensiom of the system described Iy, and
hence the limitN—o of the right-hand side exists for any
numberN of variables. It is then possible to generalize it to
continuous systems by introducing a field functigx) with Qn=
X a continuous variable. This leads to the definition of a new

type of path integral

where the factoQN(q,ﬁ,A) is found to be

N/2

n oA

I[1(1—-q) - i(i+1)]
1T[(1—q) —Li(i+1)+ 1]

xI1

exp(—Tr In A)=f Dp(X) 1+(1—q)fw dx’

Qn can be absorbed into the left-hand side integration when
- U1-9 making the transitioiN—o. One observes that the ratio of
' gamma functions under the product sign readily becomes
one for sufficiently large numberis such that the product
(7)  contains only low numbers of the iterations.
Hence, dividing byQy and making the transition to very

xfidx¢(x’)A(x’,x)¢(x)

Where largeN we define the extended path integral as
. (1-g"?
Dp(x)=lim [] dx— J Dep(x)
NEETT N Bl q) - i1+ 1), 1] {1+(1—a)A[A ¢]-2R[p, ]}~
=1
8 exp(—TrinA
8 _ o il ) — 12
is the path differential that is defined as a limiting process. {1-(1=a)SIA " pl}

With the formal definition of the path integrél) we have .
extended the Gaussian path integrals to generalized Loren\f\fIth
zian path integrals. It can be easily shown that in the limit of o o
g— +1 they smoothly make the transition to Gaussian path A[A, ¢]=f dx’f dxe (X" )A(X',X) d(X),
integrals. It is hence clear that the Gaussian integrals are - ‘°°
limiting cases of the above Lorentzian integrals. Since .
Gaussian processes are purely stochastic processes it can be R[p"ﬁ]:f dxp(x) b(X),
argued that the new Lorentzian path integrals are appropriate —
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SIA L p]= fjwdx’ J':pr(x’)A‘l(x’ X)p(X).

Herep(x) is a known function, ané~1(x’,x) can be evalu-
ated once the functional form of the matéxis known. One
simple choice ofA(x’,x) is

A(X",X) = (dyrdy+a) (X' —X), (13
in which case one obtains the usual representations

Trin A=(27-r)_1f de dp In(p?+a),
(14

Afl(x’,x)=(27-r)*lf dp exdip(x’—x)]/(p?+a).

The inclusion of the functiom(x) will allow for the defini-
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Except for the denominator, the fact@y(q) has been in-
cluded into the limiting process, which leads to the definition
of the path elemenD¢. Again, because of the symmetry
this integral exists only for even valuespfand vanishes for
odd p. The derivatives in the path integral formalism are
understood as functional derivatives:

5 Jd B -
5o00) xP0B0=(x), i=1,...p.

(19

Generalization of the formalism to complex column vectors
z=(24,...,2y),2=2""7 and Hermitian matricesA is
straightforward. In this case it holds thafdzdZ
=2[d(Rez)d(Imz), and one finds for the corresponding
path integral

e
{1+(1- Q).Z[A, b, d* ]}1/(17q)

=exp(—TrIn A),
(20)

tion of more general path integrals. One should note ongyhere we have defined

distinction from the Gaussian case. The more complicated
derivation of the integrals leads to a path element that is
defined in a slightly different way because it now includes
the arbitrary functiorp. This merely implies a different scal-

Z[A,qb,(z)*]:fdx’Jdx¢*(x')A(x’,x)¢>(x). (22)

further development of the formalism.

From this expression a complex generalization of the func-

fonal derivative path integrafl8) automatically follows.

This further generalization completes our discussion,

Diﬁerentiating the integral in Eq12) with respect to the  \yhich was restricted to the casp<1. Extension to the
components op at p=0,4=0 one finds another class of complementary casg>1 is trivially done by replacing 1
integrals that can be transformed into path integrals. These q with g—1 in all expressions. But since the domains of

integrals have the following form:

- Xml‘“mede“dXN

Cp(q)f_m--- e (14 (1—q)xT- A x]PF I

=exp(—TrIn A)(Aqin, -An m +Pem.
(15

Here perm means all possible permutations. Defining

p
M(p>=i§1 m;, (16)

the constant factoC,(q) is given as

2" T((1-q) +p)(1-q|"?

Cp(q)= 1+(1-qM® T1-q) | 47

17

These integrals are nonzero for eyeand vanish for odgh.

definition are not symmetric for both cases, the resulting in-
tegrals will have different properties and will apply to differ-
ent physical conditions.

In summary, we have demonstrated that it is possible to
define a class of path integrals that are non-Gaussian. These
path integrals can be understood as describing non-Gaussian
processes containing nonvanishing correlations among states
of a system as is suggested by statistical mechanical investi-
gations of the generalized Lorentzian distribution function
(1) [5,6,7]. It will be interesting to explore what effects can
be described in the language of such path integrals and
which quantum theoretical problems can be solved by its
application. Formally, this opens up the possibility to refor-
mulate quantum mechanics in terms of such integrals. This
requires further investigation of the physical relevance of
correlations in the quantum domain, a problem of interest in
the attempts to detect quantum chaos.

In order to provide a first physical application we refer to
the definition of the path integral representation of transition
amplitudes between two stat€s =Q(t’),Q"=Q(t") for a
system described by the&lassical Hamiltonian H(P,Q),
with Q,P the canonically conjugate positions and momenta,

They can immediately be rewritten as path integrals. Obsen/eSpectively. The well-known expression for the transition

ing that>;m,— =;i=p(p+1)/2 in this case,

f Dpep(X1) "~ p(Xp)
{1+ Q- A[A g2 D*P
[1+(1_q)(|3/2) (p+l)]
exp(Tr In A)

X[ATY(X1,X0) ... A Y(Xp_1,X,) +perni. (18

amplitudes is
i (v .
(Q",t"lQ’,t’)ocf DQDP ex;{%r (PQ—H)dt}.
t!
(22)
In the above case the transition is described by the linear
Schralinger equation. For Hamiltonians of the form

H(P,Q)=P?2m+V(Q), with m the particle massy(Q)
the generalized scalar potential, and making the transition to
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imaginary timeit— t, the above integral becomes Gaussian.From here the transition to nonlinear scalar field theory is
This suggests that replacing the exponential function wittstraightforward. Defining the field function and momentum
the corresponding Lorentzian will describe transitions in aby ¢, @, respectively, the field generating functional reads
nonlinear Schralinger system where the different states are
not independentas in nonlinear laser interactipriWe may

1_
formally write such an integral as W JI|=K | D¢Dw| 1+ -4

h

1-¢q

1+ —— 0
h xfd“?(ﬂ—im—f—m)
IXo

A - 1(1-q)
xf_ dt(iPQ—H+JQ)}

t!

- U(1-q)
. (26

<Q”,t"|Q,,t,>O( DQDP

with Hamiltonian densityH(¢,w) and boundary conditions

(23
where an external driving forc&(t)Q has been introduced. im e(x)=¢"(x), _lIm o(x)=¢"(x),  (27)
Clearly, in this case the linear relati®Q)=Q|Q), with S o= o=

the Schrdinger operator an€) its eigenvalue is not appli- _ _ _ _
cable. Instead, the new definition of the expectation value igvhere we have used the four-dimensional Minkowski nota-
tion with x, the time coordinate. In addition the normaliza-

"o Y=ol 14 i(1—q) tion constank is chosen such that[J]=1 for J=0. These
(Q""Q",t)=(Q"| h generating functionals serve as generators for the Green
functions of the particular problem for given control param-
- 1/(1-q) . . )
XB(t"—t) Q') (24) eterg. As usual, knowledge of the Hamiltonian density and
' the external driving forces is required.

R Nonlinear Schrdinger equations are known from nonlin-

H is the(time independentHamilton operator. Formally itis ear optics, nonlinear plasma, and turbulence theories where

also possible to write down the ground-to-ground state amthey describe phenomena like soliton formation, plasma col-

plitude W[ J] in the presence of external force fields for the lapse, nonlinear laser interaction, anomalous absorption of

Lorentzian case: radiation, chaotic transitions in pumped lasers, and transition
to turbulence. In all these processes correlations are of fun-

1+ 1-q damental importance.

W[J]= | DQDP -
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