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Generalized-Lorentzian path integrals
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~Received 10 September 1997; revised manuscript received 26 January 1998!

A type of path integral is introduced that is based onq-Lorentzian functions. It extends the common family
of Gaussian path integrals to a more general class with the Gaussian path integrals being the limiting case for
q→1. Intuitively one may expect that this type of path integral applies to problems where inherent correlations
become important. Application to turbulence or nonlinear Schro¨dinger problems may be possible. As a first
step we provide the modified representation for transition probabilities and the generation functional.
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Path integrals have been introduced into physics by Fe
man @1# ~for reference see also@2#! in an approach to refor
mulate quantum mechanics in terms of the many virtual
bits a particle may perform when passing from an init
position in spacetime to its final destination. These integ
have been based on Gaussian integrals because of their
tively easy mathematical treatment. In addition, however,
underlying Markovian assumption of equal probability of t
particle orbits in quantum mechanics justified the Gauss
assumption and immediately lead to Gaussian statistics.

More recently it has been demonstrated that statistical
chanics may under some special, though so far not well
derstood, circumstances deviate from pure Markovian
ture. The investigation of Le´vy flight dynamics @3,4#
suggests that statistical mechanics sometimes does no
low Gaussian distributions. Moreover, it has been sugge
that thermodynamics can be reformulated to account
some observed nonextensivity@5#. This case has recentl
been given a sound statistical basis@6,7#. The important find-
ing is that the Boltzmann-Gaussian distribution of states
replaced by a distribution of the type of aq-generalized
Lorentzian

f q~x!5Aq@16~12q!bx2#71/~12q!, ~1!

whereq is a parameter that in the classical case contains
underlying microscopic dynamics,b a constant correspond
ing to the temperature of the system,Aq an appropriate nor-
malization constant, and the upper and lower signs refe
the two casesq<1 andq>1, respectively. In the limit of
q→1 the distribution~1! smoothly approaches the Gaussi
distribution of independent states. Hence, the above distr
tion function is a generalization of the usual Maxwe
Gaussian distribution, andq contains the information abou
the correlations between states. These correlations have
discussed in the context of some applications~see, e.g.,@6#!.
An explicit expression forq applying to one particular cas
has been derived by Hasegawaet al. @8#.

The above distribution gives the possibility to discu
thermodynamically nonextensive states and also to defin
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kind of quantum statistics whose properties differ from t
known statistics@9#. Here we demonstrate that on its bas
one can also define a new class of path integrals that
prove useful in treating statistical states with correlatio
Such integrals can be constructed in analogy to the Gaus
path integrals by considering the non-Gaussian integral

E
2`

`

dx@11~12q!bx2#2 1/~12q!5
2B@1/~12q! 2 1

2 , 1
2 #

@~12q!b#1/2
,

~2!

where B(x,y) is the beta function, which is expressib
through gamma functions. This integral converges foruqu
,1. Forq→11 it approaches its Gaussian value (pb)21/2.
Though the above integration is easy to perform, there
striking difference from the Gaussian limit in that conve
gence of the integral is strictly valid only foruqu,1 while
for the related moment integrals where the integrand is m
tiplied by xa21 convergence is restricted to the domain
2q,2/a. Extension to the domainq.1 can thus be ob-
tained only on the way of defining the complementary in
gral

E
2`

`

dx@11~q21!bx2#2 1/~q21!5
2B@1/~q21! 2 1

2 , 1
2 #

@~q21!b#1/2
,

~3!

which exists for 1,q,3 and in the limitq→11 also re-
produces the Gaussian case. Negative values ofq are ex-
cluded in this case.

We now generalize the integral in Eq.~2! to N dimen-
sions. It then assumes the following compact form:

E
2`

`

¯E
2`

` dx1¯dxN

F11~12q!(
i 51

N

b ixi
2G 1/~12q!

5

2N)
i 51

N

B@1/~12q! 2 1
4 i ~ i 11!, 1

2 #

)
i 51

N

@~12q!b i #
1/2

. ~4!
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57 5151GENERALIZED-LORENTZIAN PATH INTEGRALS
This integral can be written as

E
2`

`

¯E
2`

` dx1¯dxN

@11~12q!xT
•A•x#1/~12q!

5
2N

@~12q!NdetA#1/2)i 51

N

BF 1

12q
2

1

4
i ~ i 11!,

1

2G . ~5!

The column vectorx has elementsxi , the superscriptT
means taking the transposed, andb i are the elements of th
matrix A.

The last equation is similar to the result for Gaussian
tegrals. This is obvious because the Gaussian case is
tained in our more general representation as the limitq→
11. In order to make this similarity even more lucid w
divide by the normalization factor on the right-hand side
obtain

exp~2Tr ln A!5
~12q!N/2

2N)
i 51

N

B@1/~12q! 2 1
4 i ~ i 11!, 1

2 #

3E
2`

`

¯E
2`

` dx1¯dxN

@11~12q!xT
•A•x#1/~12q!

.

~6!

The identity of the exponential of the trace of the logarith
and the determinant is a well-known fact and can be pro
by diagonalization. The left-hand side of this expression
finite for any dimensionN of the system described byA, and
hence the limitN→` of the right-hand side exists for an
numberN of variables. It is then possible to generalize it
continuous systems by introducing a field functionf(x) with
x a continuous variable. This leads to the definition of a n
type of path integral

exp~2Tr ln A!5E Df~x!F11~12q!E
2`

`

dx8

3E
2`

`

dxf~x8!A~x8,x!f~x!G2 1/~12q!

,

~7!

where

Df~x!5 lim
N→`

)
i 51

N

dxi

~12q!N/2

2N)
l 51

N

B@1/~12q! 2 1
4 l ~ l 11!, 1

2 #

~8!

is the path differential that is defined as a limiting proces
With the formal definition of the path integral~7! we have

extended the Gaussian path integrals to generalized Lo
zian path integrals. It can be easily shown that in the limit
q→11 they smoothly make the transition to Gaussian p
integrals. It is hence clear that the Gaussian integrals
limiting cases of the above Lorentzian integrals. Sin
Gaussian processes are purely stochastic processes it c
argued that the new Lorentzian path integrals are approp
-
on-
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for application in cases when deviations from stochastic
dominate the evolution of the system under considerat
The parameterq then provides a compactification of the no
stochastic correlation processes into one single number.

For applications of the path integral formalism it is ve
much desired to have an integral that contains a free varia
Such an integral can be constructed by adding a linear t
to the square of the variable in the Lorentzian denominato
Eq. ~6!. We do this in the form

E
2`

`

¯E
2`

` dx1¯dxN

$11~12q!@xT
•A•x22rW T

•x#%1/~12q!
. ~9!

Here rW is the new freeN-dimensional column vector. This
expression can be quadratically completed using

xT
•A•x22rW T

•x5~x2A21
•rW !T

•A•~x2A21
•rW !

2rW T
•A21

•rW . ~10!

With the usual change of variablesx8[x2A21
•rW the inte-

gral including the free-parameter vectorrW can be solved
yielding

E
2`

`

¯E
2`

` dx1¯dxN

$11~12q!@xT
•A•x22rW T

•x#%1/~12q!

5
QN~q,rW ,A!exp~2Tr ln A!

@12~12q!rW T
•A21

•rW #1/~12q!
, ~11!

where the factorQN(q,rW ,A) is found to be

QN5F4pS 1

12q
2rW T

•A21
•rW D GN/2

3)
i 51

N G@1/~12q! 2 1
4 i ~ i 11!#

G@1/~12q! 2 1
4 i ~ i 11!1 1

2 #
.

QN can be absorbed into the left-hand side integration w
making the transitionN→`. One observes that the ratio o
gamma functions under the product sign readily becom
one for sufficiently large numbersi such that the produc
contains only low numbers of the iterations.

Hence, dividing byQN and making the transition to ver
largeN we define the extended path integral as

E Df~x!

$11~12q!A@A,f#22R@r,f#%1/~12q!

5
exp~2Tr ln A!

$12~12q!S@A21,r#%1/~12q!
, ~12!

with

A@A,f#5E
2`

`

dx8E
2`

`

dxf~x8!A~x8,x!f~x!,

R@r,f#5E
2`

`

dxr~x!f~x!,
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5152 57RUDOLF A. TREUMANN
S@A21,r#5E
2`

`

dx8E
2`

`

dxr~x8!A21~x8,x!r~x!.

Herer(x) is a known function, andA21(x8,x) can be evalu-
ated once the functional form of the matrixA is known. One
simple choice ofA(x8,x) is

A~x8,x!5~]x8]x1a!d~x82x!, ~13!

in which case one obtains the usual representations

Tr ln A5~2p!21E dxE dp ln~p21a!,
~14!

A21~x8,x!5~2p!21E dp exp@ ip~x82x!#/~p21a!.

The inclusion of the functionr(x) will allow for the defini-
tion of more general path integrals. One should note
distinction from the Gaussian case. The more complica
derivation of the integrals leads to a path element tha
defined in a slightly different way because it now includ
the arbitrary functionr. This merely implies a different scal
ing of the length of the path element and does not affect
further development of the formalism.

Differentiating the integral in Eq.~12! with respect to the
components ofrW at r50,A50 one finds another class o
integrals that can be transformed into path integrals. Th
integrals have the following form:

Cp~q!E
2`

`

¯E
2`

` xm1
¯xmp

dx1¯dxN

@11~12q!xT
•A•x#p11/~12q!

5exp~2Tr ln A!~Am1m2

21
¯Amp21mp

21 1perm!.

~15!

Here perm means all possible permutations. Defining

M ~p!5(
i 51

p

mi , ~16!

the constant factorCp(q) is given as

Cp~q!5
2M ~p!

11~12q!M ~p!

G„1/~12q! 1p…

G„1/~12q!… S 12q

4p D N/2

.

~17!

These integrals are nonzero for evenp and vanish for oddp.
They can immediately be rewritten as path integrals. Obs
ing that( imi→( i i 5p(p11)/2 in this case,

E Dff~x1! ¯f~xp!

$11~12q!A@A,f#%1/~12q!1p

5
@11~12q!~p/2! ~p11!#

exp~Tr ln A!

3@A21~x1 ,x2! . . . A21~xp21 ,xp!1perm#. ~18!
e
d

is

e

se

v-

Except for the denominator, the factorCp(q) has been in-
cluded into the limiting process, which leads to the definiti
of the path elementDf. Again, because of the symmetr
this integral exists only for even values ofp and vanishes for
odd p. The derivatives in the path integral formalism a
understood as functional derivatives:

d

dr~xi !
E dxr~x!f~x!5f~xi !, i 51, . . . ,p. ~19!

Generalization of the formalism to complex column vecto
z5(z1 , . . . ,zN),z†5z* T and Hermitian matricesA is
straightforward. In this case it holds that*dzdz*
52*d(Rez)d(Im z), and one finds for the correspondin
path integral

E E DfDf*

$11~12q!Ã@A,f,f* #%1/~12q!
5exp~2Tr ln A!,

~20!

where we have defined

Ã@A,f,f* #5E dx8E dxf* ~x8!A~x8,x!f~x!. ~21!

From this expression a complex generalization of the fu
tional derivative path integral~18! automatically follows.

This further generalization completes our discussi
which was restricted to the caseq,1. Extension to the
complementary caseq.1 is trivially done by replacing 1
2q with q21 in all expressions. But since the domains
definition are not symmetric for both cases, the resulting
tegrals will have different properties and will apply to diffe
ent physical conditions.

In summary, we have demonstrated that it is possible
define a class of path integrals that are non-Gaussian. T
path integrals can be understood as describing non-Gaus
processes containing nonvanishing correlations among s
of a system as is suggested by statistical mechanical inv
gations of the generalized Lorentzian distribution functi
~1! @5,6,7#. It will be interesting to explore what effects ca
be described in the language of such path integrals
which quantum theoretical problems can be solved by
application. Formally, this opens up the possibility to refo
mulate quantum mechanics in terms of such integrals. T
requires further investigation of the physical relevance
correlations in the quantum domain, a problem of interes
the attempts to detect quantum chaos.

In order to provide a first physical application we refer
the definition of the path integral representation of transit
amplitudes between two statesQ85Q(t8),Q95Q(t9) for a
system described by the~classical! Hamiltonian H(P,Q),
with Q,P the canonically conjugate positions and momen
respectively. The well-known expression for the transiti
amplitudes is

^Q9,t9uQ8,t8&}E DQDP expF i

\Et8

t9
~PQ̇2H !dtG .

~22!

In the above case the transition is described by the lin
Schrödinger equation. For Hamiltonians of the form
H(P,Q)5P2/2m1V(Q), with m the particle mass,V(Q)
the generalized scalar potential, and making the transitio
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57 5153GENERALIZED-LORENTZIAN PATH INTEGRALS
imaginary timei t→ t̄ , the above integral becomes Gaussi
This suggests that replacing the exponential function w
the corresponding Lorentzian will describe transitions in
nonlinearSchrödinger system where the different states a
not independent~as in nonlinear laser interaction!. We may
formally write such an integral as

^Q9,t9uQ8,t8&}E DQDPF11
12q

\

3E
t̄ 8

t̄ 9
d t̄ ~ iPQ̇2H1JQ!G2 1/~12q!

,

~23!

where an external driving forceJ(t)Q has been introduced
Clearly, in this case the linear relationŜuQ&5QuQ&, with Ŝ
the Schro¨dinger operator andQ its eigenvalue is not appli
cable. Instead, the new definition of the expectation valu

^Q9,t9uQ8,t8&5^Q9uF11
i ~12q!

\

3Ĥ~ t92t8!G2 1/~12q!

uQ8&. ~24!

Ĥ is the~time independent! Hamilton operator. Formally it is
also possible to write down the ground-to-ground state a
plitude W@J# in the presence of external force fields for t
Lorentzian case:

W@J#}E DQDPF11
12q

\

3E
2`

`

d t̄ S H2 iP
dQ

d t̄
2JQD G2 1/~12q!

. ~25!
et

re
.
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From here the transition to nonlinear scalar field theory
straightforward. Defining the field function and momentu
by w,Ã, respectively, the field generating functional read

W@J#5KE DwDÃF11
12q

\

3E d4x̄SH2 iÃ
]w

] x̄0

2Jw D G2 1/~12q!

, ~26!

with Hamiltonian densityH(w,Ã) and boundary conditions

lim
x̄0→`

w~ x̄!5w8~x!, lim
x̄0→2`

w~ x̄!5w9~x!, ~27!

where we have used the four-dimensional Minkowski no
tion with x0 the time coordinate. In addition the normaliz
tion constantK is chosen such thatW@J#51 for J50. These
generating functionals serve as generators for the Gr
functions of the particular problem for given control param
eterq. As usual, knowledge of the Hamiltonian density a
the external driving forces is required.

Nonlinear Schro¨dinger equations are known from nonlin
ear optics, nonlinear plasma, and turbulence theories w
they describe phenomena like soliton formation, plasma c
lapse, nonlinear laser interaction, anomalous absorption
radiation, chaotic transitions in pumped lasers, and transi
to turbulence. In all these processes correlations are of
damental importance.
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